Skip to content
Snippets Groups Projects
Commit 28c02493 authored by edris's avatar edris
Browse files

Images title

parent 4af0ebe6
No related branches found
No related tags found
No related merge requests found
Pipeline #47594 failed
wellPanel(
div(
class = "tutorial-content",
HTML(
"
<h4>Introduction</h4>
<p>The <strong>Differential Analysis</strong> tab provides users with the ability to analyze differences in gene or protein expression between different experimental conditions. This analysis is crucial for identifying biomarkers or understanding biological pathways that are significantly affected. Below is a comprehensive guide to using the tab effectively, including data uploading, setting parameters, and visualizing the results interactively.</p>
<h4>1. Sidebar Panel: Uploading and Configuring Data</h4>
<p>The <strong>Sidebar Panel</strong> contains various controls for uploading expression data and metadata, configuring preprocessing options, and starting the analysis. Here's a detailed breakdown of each control:</p>
<ul>
<li><strong>Expression Data Upload:</strong>
<p>Use the <code>Expression table</code> input to upload your expression dataset. This file should have gene/protein identifiers in the first column, with expression values in the remaining columns. Accepted formats include <code>.csv</code> and <code>.tsv</code>.</p>
</li>
<li><strong>Metadata Upload:</strong>
<p>The <code>Metadata</code> input is used to upload sample information, such as experimental conditions. Metadata should include columns like sample identifiers and group labels (e.g., control vs. treatment). Proper metadata is crucial for accurate differential analysis.</p>
</li>
<li><strong>Format Selection:</strong>
<p>Select the appropriate file format (CSV or TSV) using the <code>Format</code> dropdown to ensure that your data is properly interpreted by the system.</p>
</li>
<li><strong>Load CPTAC data:</strong>
<p>If you want to explore the features without uploading your own data, use the <code>Load CPTAC data</code> button. You can specify the type of data (e.g., Proteome or Phosphoproteome) and the cancer type (e.g., Lung Adenocarcinoma). This is helpful for understanding the workflow.</p>
</li>
<li><strong>Gene Filtering:</strong>
<p>Choose a gene filtering method to refine your dataset before running the differential analysis:
<ul>
<li><strong>Variance:</strong> Retains features with high variability across samples, as they are likely to be biologically significant.</li>
<li><strong>minExpression:</strong> Filters out genes or proteins that are not expressed above a minimum level in a certain proportion of samples.</li>
<li><strong>None:</strong> No filtering is applied, and all features are retained.</li>
</ul>
</p>
</li>
<li><strong>Cutoff Parameters:</strong>
<p>Adjust the thresholds for filtering using the provided sliders:
<ul>
<li><strong>Variance Cutoff:</strong> Set the minimum variance level to retain highly variable features.</li>
<li><strong>Minimum Expression:</strong> Set the minimum expression level and the proportion of samples required for a gene/protein to be retained.</li>
</ul>
</p>
</li>
<li><strong>Conversion Options:</strong>
<p>Use the <code>Ensembl to symbol</code> option to convert Ensembl IDs to gene symbols for easier interpretation.</p>
</li>
<li><strong>Preprocess Button:</strong>
<p>After configuring all the settings, click the <code>Process</code> button to apply filtering, normalization, and other preprocessing steps to your data.</p>
</li>
</ul>
<img src='img_tutorial/differential_sidebar_example.png' alt='Sidebar Example' title='Sidebar Example' style='width:500px; height:400px; margin-top: 10px; display: block; margin-left: auto; margin-right: auto;'>
<h4>2. Visualization Tools and Sample Analysis</h4>
<p>Once data preprocessing is complete, you can use various visualization tools to explore the dataset:</p>
<ul>
<li><strong>Expression Table and Metadata:</strong>
<p>Displays the preprocessed expression data and sample metadata, crucial for analysis and grouping.</p>
</li>
<li><strong>Calculate Top Variable Genes (MAD):</strong>
<p>Identifies the most variable genes in the dataset, focusing on features with high variability.</p>
</li>
<li><strong>Inspecting Samples:</strong>
<p>Analyze feature variability using PCA, UMAP, heatmaps, and density plots to gain deeper insights into clustering and data patterns.</p>
</li>
</ul>
<div style='display: flex; flex-wrap: wrap; justify-content: space-around;'>
<div class='custom-tooltip-container'>
<img src='img_tutorial/pre0.png' alt='Image 0' title='Preprocessing Example 0' style='width:400px; height:300px; margin: 10px;'>
</div>
<div class='custom-tooltip-container'>
<img src='img_tutorial/pre1.png' alt='Image 1' title='Preprocessing Example 1' style='width:400px; height:300px; margin: 10px;'>
</div>
</div>
<h4>3. DEG Analysis and Functional Exploration</h4>
<p>Generate tables and plots to analyze differentially expressed genes and proteins. Leverage enrichment analysis tools to explore pathways and protein-protein interactions.</p>
<div style='display: flex; flex-wrap: wrap; justify-content: space-around;'>
<div class='custom-tooltip-container'>
<img src='img_tutorial/1.png' alt='DEG Example 1' title='DEG Analysis Example' style='width:400px; height:300px; margin: 10px;'>
</div>
</div>
<h4>4. Drug Relevance</h4>
<p>Explore potential therapeutic implications by linking DEGs with drug data, visualized using boxplots and detailed tables.</p>
<h4>5. Next Steps</h4>
<ul>
<li><strong>Save Results:</strong> Download the results for further use.</li>
<li><strong>Downstream Analysis:</strong> Use insights for functional enrichment or biomarker discovery.</li>
<li><strong>Collaborate:</strong> Share findings with collaborators to expand the research.</li>
</ul>
"
)
)
)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment