System Description: Small Loan Application System
Team: Alejandro Ballesteros Perez, Phasha Davrishev, Roman Krutsko, Khamidjon
Khamidov

Task 1: Description

The Small Loan Application System facilitates customers in obtaining small loans ranging
from 500 to 15,000 EUR when purchasing products from shops affiliated with an
organization. The systeminvolves multiple userroles, including Customers and Employees
(Organization representatives), to process and approve loan applications efficiently.

Classes, Attributes, and Relationships

Class Attributes Relationships
- CustomerID
- ldentity Code
- Name

- Contact Information - Can have multiple Loan Applications
- Gender (1..n)

- Birthday

- Citizenship

- Occupation

- EmployeelD

- Experience

- Position

- Shift

- ApplicationID
- LoanAmount
- LoanPeriod

- Interest Rate - Linked to one Customer (1..1)

- Decision Status - Linked to one Product (1..1)
(positive/negative) - Processed at one Shop (1..1)

- Creation Date - Approved by one Employee (1..1)
- Product - May resultin one Contract (1..1)
- Customer

- CustomerSignature
- EmployeeSignature
- ContractID

- Status

IContract - TerminationDate

- Application

- Duration

|Customer

- Approves Loan Applications (1..n)
- Associated with one Organization
(1..1)

|[Employee

|Loan
Application

- Originates from one Loan Application
(1..1)

- Amount
- Shop
- Start Date

|Organization

- OrganizationlD
- Name

- Address

- Contact Info

- Owns multiple Shops (1..n)
- Employs multiple Employees (1..n)

- Belongs to one Organization (1..1)

- ShoplD - Offers multiple Products (1..n)
Shop - Address
- Facilitates multiple Loan Applications
- ContactInfo
(1..n)
- ProductID
- Name - Available at multiple Shops (1..n)
Product - Price - Linked to multiple Loan Applications
- Description (1..n)
- Quantity
System Workflow:

e Customer visits a Shop and selects a Product.

e |If interested in financing, a Loan Application is created, incorporating data from the

Customer, Product, Shop, and Organization, along with loan amount and period.

e The Loan Application undergoes an automatic decision process by the Organization,

resulting in a Decision Status of positive or negative.

e Positive: The application can proceed to become a Contract.

e Negative: The application is blocked from further progression. Its possible to have manual

review by Employee

e For a positive decision, both the Customer and an Employee must approve (sign) the Loan

Application.

e Once approved by both parties, the Loan Application transitions into a Contract.

Task 2: Class Model

Link to model: https://www.figma.com/board/pSn5QPRGnAveXV0f3bPlea/Loan-Application?node-

id=0-1&t=xZWbkpfqZ6srQtRz-1

name

address
phone number
website

reviewApplication(application)

belongs to

id

nanme
address
phone
email
orgld

signapplication(application)

. w
has
id
name
address
phone
email
belongs to

id

contains
name
description
quantity
price

has

1.1

Loan Applicatio

id
amount
interest_rate

shop_id

manages belongs to

duration
status

date
product_id
approval_date

customer_id

customer
signature
anization
signature

createContract(application)

position
experience
work_shift

manualSignpplication(application)

account_number
identity_code

gender

birth_date

citizenship

occupation
monthly_income
createApplication(application)
signApplication(application)

cancelContract(contract)

1.1

creates

Co

id

act

date
customer_id
shop_id
amount
duration
payment_day

start_date

expected end
date

payment_method

late_payment
penalty
termination
date

status

terminateContract(contract)

https://www.figma.com/board/pSn5QPRGnAveXV0f3bPlea/Loan-Application?node-id=0-1&t=xZWbkpfqZ6srQtRz-1
https://www.figma.com/board/pSn5QPRGnAveXV0f3bPlea/Loan-Application?node-id=0-1&t=xZWbkpfqZ6srQtRz-1

PaymentMethod

CASH
CARD

BANK_TRANSFER

Shift

NIGHT

ApplicationStatus

SUBMITTED
PROCESSING
REJECTED

ACCEPTED

M
E

Other

ContractStatus

ACTIVE
TERMINATED

CANCELLED

Position

SELLER

MANAGER

IT_SUPPORT

Task 3: Class Model

Our first choice for the current task of creating a class model was Figma. It is a cloud-based design
tool mostly used for UlI/UX design, but in our case, it also suits nicely to effectively design class
diagrams due to its flexibility. Its interface and familiarity with our team made this tool a relatively
easy choice for creating a simple class diagram. Since there are literally no restrictions to designing
things in it, it is easy to visually represent class structures and relationships with Figma’s extensive
library of shapes, and connectors. As it is in the cloud, our team can work simultaneously on one
project or diagram in an online workspace, which is a great advantage of using this tool. The ability to
export designs in various formats also ensures good integration with other tools during the
development process.

Our choice for future diagram modelling will be Visual Paradigm, which is as they say “the market #1
visual modeling and diagramming platform” designed to help create various types of diagrams. An
important moment for our team in terms of choosing a tool for this matter was the presence of a free
trial or community version in the case of Visual Paradigm, which makes it suitable for all kinds of
users, especially students. This tool is also an online platform, which provides flexibility in working
on projects, if you connect to Visual Paradigm Online, it reveals a lot of hew team tools to
conveniently manage the work. Your projects and diagrams can be saved to an online workspace.
Diagrams specifically can be edited from both online and desktop versions. Additionally, the tool
includes a version control system, allowing users to track changes, revert to previous versions, and
manage the progress of the diagram. Users can upload work through commits (like in GitHub),
however, in Community Edition only 5 commits per day are allowed.

Task 3: (Additional Point)

Regarding Figma, unfortunately, it doesn't provide the ability to generate code from a class diagram,
since it is not specifically a tool to design these structures, but rather generally for UI/UX design. As
for Visual Paradigm, has a very nice feature of generating not only application code from diagrams
but also the code for databases. It supports various programming languages, such as Java and C#.
This tool has great support for Java persistent code, including static methods, factory classes, Data
Access Objects (DAO), Plain Old Java Objects (POJO), or even just the mapping between objects and
database entities. However, we have not yet tried this feature of Visual Paradigm, since application
class mode is yet to be created.

Task 4: Evidence of Teamwork

Link to Gitlab Repository: https://gitlab.cs.ut.ee/alejandro1/systems-modelling

Screenshot of commit history:

Oct 15, 2024

#3%; update class diagram
W% khamidjon authored 2 hours ago

less2aas | [| B3

§§ Merge branch *main’ of gitlab.cs.ut.ee:alejandrol/systems-modelling
+00 4

e827f52c o
PhashaDavrishev authored 4 hours ago BB

50 date a bit
“P ate a bi cdfa7doz | [| B2

PhashaDavrishev authored 4 hours ago

.";';‘i_\ Task 3, small fix for pdf document
o]

& romankrutsko authored 7 hours ago

A,

cc3dfedd [| B9

Oct 14, 2024

7050793 | [| B
@y romankrutsko authored 19 hours ago .

Oct 13, 2024

5 Replace SystemsModellingTask1.pdf c3096f08 | [| B2
“ap? alejandrol authored 1day ago
£Fris Replace SystemsModellingTask1.pdf

Sebeedf7 [| B3
“\i’ alejandrol authored 1day ago .

task 5
1b3febsc | [| B3
.88' PhashaDavrishev authored 1day ago o

Sep 24, 2024

Class diagram for loan application

58c89an2 | [B2
khamidjon.khamidov authored 3 weeks ago

W HW1| Upload Task 1
o4 f5592dfe | [y | B3
"I Alejandro Ballesteros Perez authored 3 weeks ago -
s?&‘ Add dir HW1 9a32b415 | [B9
"W Alejandro Ballesteros Perez authored 3 weeks ago o
W Initial commit

pede 33808dfd | [y B3
“¥A$ Alejandro Ballesteros Perez authored 3 weeks ago -

https://gitlab.cs.ut.ee/alejandro1/systems-modelling

Task 5: Explore and document Generetative Al capabilities

The application we have used for generating the UML class diagramm is https://diagrammingai.com.

Itis a GPT-based GenAl tool, which can create various types of diagrams, including but not limited to
flowcharts, sequence, entity relationship, class diagrams, given a prompt or an image. We have
chosen DiagrammingAl, for its specialized capabilities in creating the diagrams, and its ability to
iteratively refine diagrams through prompts. The prompt used for generating the diagram is as follows
- The system facilitates a small loan process, allowing users to apply for loans between 500 to 15,000
EUR, sign contracts, and receive funds in their bank accounts. Loan decisions are nearly
instantaneous for most applicants. It manages various user types, including customers and
organization representatives, to streamline loan processing. Key entities include User, Customer,
Loan Application, Contract, Organization (loan provider), and Shop (partner store for loan
applications). Customers can apply for multiple loans through this system. A loan application signed

both by the Organization and the customer becomes a Contract. Below is the output:

User

-5tring userld
-String name
-String email
+applyLoan()
+viewContracts()

y
is
%
Customer

-String customerld

+submitApplication(application)
+approveContract(contract)
[
14

applies for

Organization

-5tring orgld
-String name

+reviewApplication(application)
+issuelLoan(contract)

1
reviews

L4
LoanApplication

T4 -int applicationld 1

-double amount
-String status

+submit()
+withdraw()

1
becomes

1
h 4

Contract

-int contractld
-Date signedDate

+sign()
+terminate()

Shop
-String shopld
-String location

+partnerWithOrganization(org)
+enableLoanApplication{customer)

1./
_facilitates

https://diagrammingai.com/

Considering that the GenAl tool was provided with the limited description, the result can be counted
as satisfactory. Although the number of attributes is insufficient (which can be justified by the lack of
context), the ones present were aligned with the diagram we created. The associations between
different classes, and their multiplicities were also chosen correctly. Furthermore, DiagrammingAl
identified the dependencies between classes, such as “Customer applies for a Loan Application”,
“Organization reviews LoanApplication”. The generated diagram effectively depicts the intended
behaviour of the classes by providing the operations. While the majority of operations DiagrammingAl
included, are relevant for our system, a few operations important for the business logic were omitted
(e.g choosing identification method for the Customer, or updating the status for the LoanApplication,
etc).

Allin all, I believe that this tool can be convenient for developing an initial sketch of a class diagram.
Its strengths lie in identifying the basic operations, and relationships between classes based on a
brief description. However, due to the lack of context, it can miss crucial domain-specific features,
which can be considered a weakness. By iterating and constantly refining the prompt with details,
the diagram provided by the DiagrammingAl can become increasingly similar to the actual diagram
intended for the system. Although we did not update our model with the details provided by the tool,
it was useful for validating that our model aligns with the standard conventions for UML class
diagrams.

