Task 5.

The application we have used for generating the UML class diagramm is
https://diagrammingai.com. It is a GPT-based GenAl tool, which can create various types of
diagrams, including but not limited to flowcharts, sequence, entity relationship, class diagrams,
given a prompt or an image.

We have chosen DiagrammingAl, for its specialized capabilities in creating the diagrams, and its
ability to iteratively refine diagrams through prompts.

The prompt used for generating the diagram is as follows - The system facilitates a small loan
process, allowing users to apply for loans between 500 to 15,000 EUR, sign contracts, and

receive funds in their bank accounts. Loan decisions are nearly instantaneous for most
applicants. It manages various user types, including customers and organization
representatives, to streamline loan processing. Key entities include User, Customer, Loan
Application, Contract, Organization (loan provider), and Shop (partner store for loan
applications). Customers can apply for multiple loans through this system. A loan application
signed both by the Organization and the customer becomes a Contract.

Below is the output:

User

-String userld
-String name
-String email

+applyLoan()
+viewContracts()

‘|
is
1
Customer

-String customerld

+submitApplication(application)
+approveContract(contract)

1

applies for

Organization
-String orgld
-String name

+reviewApplication(application)
+issueLoan(contract)

.

reviews

LoanApplication

-int applicationld
-double amount
-String status

+submit()
+withdraw()

A

becomes
1

Contract

-int contractld
-Date signedDate

+sign()
+terminate()

Shop

-String shopld
-String location

+partnerWithOrganization(org)
+enableLoanApplication(customer)

+)

facilitates

Considering that the GenAl tool was provided with the limited description, the result can be
counted as satisfactory. Although the number of attributes is insufficient (which can be justified


https://diagrammingai.com

by the lack of context), the ones present were aligned with the diagram we created. The
associations between different classes, and their multiplicities were also chosen correctly.
Furthermore, DiagrammingAl identified the dependencies between classes, such as “Customer
applies for a Loan Application”, “Organization reviews LoanApplication”.

The generated diagram effectively depicts the intended behaviour of the classes by providing
the operations. While the majority of operations DiagrammingAl included, are relevant for our
system, a few operations important for the business logic were omitted (e.g choosing
identification method for the Customer, or updating the status for the LoanApplication, etc).
All'in all, | believe that this tool can be convenient for developing an initial sketch of a class
diagram. Its strengths lie in identifying the basic operations, and relationships between classes
based on a brief description. However, due to the lack of context, it can miss crucial
domain-specific features, which can be considered a weakness. By iterating and constantly
refining the prompt with details, the diagram provided by the DiagrammingAl can become
increasingly similar to the actual diagram intended for the system.

Although we did not update our model with the details provided by the tool, it was useful for
validating that our model aligns with the standard conventions for UML class diagrams.



